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What Can 1 Billion Trials Tell Us About Visual Search?
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Mobile technology (e.g., smartphones and tablets) has provided psychologists with a wonderful oppor-
tunity: through careful design and implementation, mobile applications can be used to crowd source data
collection. By garnering massive amounts of data from a wide variety of individuals, it is possible to
explore psychological questions that have, to date, been out of reach. Here we discuss 2 examples of how
data from the mobile game Airport Scanner (Kedlin Co., http://www.airportscannergame.com) can be
used to address questions about the nature of visual search that pose intractable problems for laboratory-
based research. Airport Scanner is a successful mobile game with millions of unique users and billions
of individual trials, which allows for examining nuanced visual search questions. The goals of the current
Observation Report were to highlight the growing opportunity that mobile technology affords psycho-
logical research and to provide an example roadmap of how to successfully collect usable data.
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Psychological researchers have never lacked for good questions.
However, sometimes method and technology lag behind—thereby
withholding the necessary tools for addressing certain questions.
As such, each new technological and/or methodological advance
provides the field with a possible means to move forward. Cog-
nitive psychology, for example, has grown hand-in-hand with each
new available technology (e.g., Wilhelm Wundt’s laboratory de-
vices, the tachistoscope, personal computers, eye-tracking devices,
brain-imaging techniques).
At present, we are in the early stages of another breakthrough

capable of pushing psychological forward. Namely, researchers
have begun to “crowd source” experiments to obtain large amounts
of data from many people in short order. Building off ingenious
ideas, such as Luis von Ahn’s “ESP Game” (a “game” that was the
basis for how Google matches words to images; von Ahn &
Dabbish, 2004), researchers have turned to outlets such as Ama-
zon’s Mechanical Turk (e.g., Buhrmester, Kwang, & Gosling,
2011) to rapidly distribute an experiment to many different par-
ticipants.
Another outlet for rapid distribution of experiments is through

the use of mobile applications—“apps” created for mobile devices,

such as Apple and Android products. Psychologists have a history
of using games and game-like interfaces to make experiments
more palatable to participants (e.g., Anguera et al., 2013; Boot et
al., 2010; Mané & Donchin, 1989; Miranda & Palmer, 2014), and
mobile devices offer an exciting new means to crowd source an
experiment in a game-like form.
Some mobile apps have been specifically designed to assess

and/or train cognitive abilities, and they can address open ques-
tions with data voluntarily contributed by users. Other mobile apps
just happen to tap into cognitive abilities in a manner that can be
analyzed by researchers, even though that might not have been the
apps’ intended purpose. For example, some games challenge play-
ers to look for differences between images presented side-by-
side—a game version of change detection tasks (e.g., Simons &
Rensink, 2005). Similarly, other games tap into abilities related to
the cognitive processes of working memory (memory match
games), go/no-go (“whack-a-mole” games), and visual search
(search-and-find games).

Using Mobile Technology for Research
There are clear advantages to crowd sourcing data collection

through mobile technology. The most obvious benefit is the po-
tential for gathering “big data”—massive datasets that provide the
ability to examine nuanced questions with sufficient statistical
power. Likewise, this can provide a means to collect relatively
cheap data in an automated and continuous manner. Lastly, this
process can mimic real-world aspects that are difficult to address
in a laboratory environment (e.g., realistic distributions of vari-
ables).
There are also clear disadvantages to consider. First, researchers

either need to have the necessary skills to create a fun game or
need to partner with a developer. Gathering data through a mobile
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game is only worthwhile if people will play the game, and people
are more likely to play if the game is fun (e.g., Miranda & Palmer,
2014). Second, large amounts of data may not necessarily result in
high-quality data; it is critical to carefully select what research
questions are to be addressed and how they are addressed through
the game interface. Finally, by collecting data through crowd
sourcing, there is an inherent lack of control over who is playing
and under what conditions (e.g., there is no way to know what
percentage of the data is collected while participants are on the
toilet).
Assuming the advantages outweigh the disadvantages and that

the disadvantages can be addressed, the largest benefit of data
collection through mobile technology is the potential for analyzing
big data. With millions (or billions) of trials, it is possible to
examine experimental variables that are too difficult to assess in a
laboratory environment. While using mobile technology for re-
search purposes may seem like a simple methodological advance,
it has the potential to greatly inform psychology theory. Here we
discuss our recent efforts focusing on the specific cognitive task of
visual search.

Examples of Using Mobile Technology for Research
Visual search is the act of looking for target items among

distractor items. Decades of research have sought to understand
this ubiquitous cognitive process and to determine how humans,
nonhuman animals, and computers successfully identify targets
(see Eckstein, 2011; Horowitz, 2014; Nakayama & Martini, 2011,
for recent reviews). Visual search has a history of using big data
analyses—in 1998, Jeremy Wolfe collated data from 2,500 exper-
imental sessions to ask “What can 1 million trials tell us about
visual search” (Wolfe, 1998). This endeavor confirmed some open
hypotheses and challenged others, while also demonstrating the
value of big data for visual search analyses.

The downside of Wolfe’s approach was that it took 10 years to
collect—as is to be expected in typical laboratory experiments.
Mobile apps offer the potential to collect data far more expedi-
tiously. In the current report, we discuss results from our recent
partnershipwithKedlinCo., the creators ofAirport Scanner (https://
www.airportscannergame.com). In Airport Scanner, players are
tasked with searching for illegal items in simulated x-ray bag
images in an airport security environment. Players view one bag at
a time and use finger-taps to identify illegal items on a touchscreen
(see Figure 1 for gameplay examples). Players are provided with a
logbook of illegal and legal items, and the logbook expands (going
from a handful of possible targets to hundreds) as players progress
through the game.
As of November 2014, there were over two billion trials from

over seven million mobile devices available for research purposes.
Data are collected in accordance with the terms and conditions of
the standard Apple User Agreement and those provided by Kedlin
Co. Each player consents to the terms and conditions when install-
ing the application, and the Duke University Institutional Review
Board provided approval for secondary data analyses (see Biggs,
Adamo, & Mitroff, 2014; Mitroff & Biggs, 2014, for more details).
Here we provide a brief overview of two examples of how we have
used the Airport Scanner data for research purposes.

Use of Airport Scanner Data

Example 1: Ultra-rare Targets

In a recently published article (Mitroff & Biggs, 2014), we
explored how visual search performance is affected when specific
targets rarely appeared. While maintaining an overall target prev-
alence rate of 50% (half of the bags in Airport Scanner had at least
one target present), the frequency with which any given target

Figure 1. Sample images from Airport Scanner: the left image contains one target (hand grenade), the middle
contains two identical targets (two exemplars of the dynamite stick target type), and the right image contains two
different target types (derringer, gasoline can). Airport Scanner images appear with permission from Kedlin Co.
Copyright 2014 by the Kedlin Company. See the online article for the color version of this figure.
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could appear varied greatly (e.g., a hammer appeared as a target in
3% of the trials while a switchblade appeared as a target in only
0.08% of the trials). Critically, nearly 30 of the targets were
“ultra-rare”—they appeared in less than 0.15% of all trials. To
examine the effects of such extreme target rarity on visual search
performance in a laboratory would be difficult for even one target
item. For example, to assess accuracy for targets that only ap-
peared in 0.1% of trials, 1,000 trials would be needed for a single
occurrence. To obtain sufficient statistical power (e.g., at least 20
occurrences), too many total trials would be needed to realistically
test such a question in a laboratory. However, with the large
Airport Scanner dataset, we were able to look at hundreds of cases
for each of the nearly 30 “ultra-rare” targets. Comparing the
relationship between search accuracy and target frequency across
78 unique target types of various frequency rates revealed an
extremely strong logarithmic relationship (adjusted R2 ! .92)
such that the “ultra-rare” items were much more likely to be
missed than the more frequently occurring targets (Mitroff &
Biggs, 2014). This example highlights the more obvious benefits
and drawbacks of using big data to address research questions. The
primary benefit is clear—a question that could have taken decades
to answer in a laboratory setting can be answered using big data in
a fraction of the time. The Airport Scanner app also bypasses most
of the potential downsides mentioned above given that it is a
popular game with an interface that is conducive to research.
However, there is an inherent lack of control over the nature of
data collected via mobile technology, and there is no obvious
means to counter this lack of control. Analogous to a “speed/
accuracy trade-off” (a well-studied juxtaposition between perform-
ing quickly vs. performing accurately; e.g., Pachella, 1974), big
data might engender a “volume/control trade-off”—a juxtaposition
between the amount of available data and the methodological
control over the data.

Example 2: Multiple-Target Search Theories
Many real-world visual searches can have more than one target

present within the same search array (e.g., more than one abnor-
mality in a radiological x-ray; more than one prohibited item in a
bag going through airport security). Unfortunately, multiple-target
searches are highly susceptible to errors such that additional tar-
gets are less likely to be detected if one target has already been
found (see Berbaum, 2012, for a review). This effect was origi-
nally termed the “satisfaction of search” phenomenon, but we have
recently renamed it the “subsequent search misses” (SSM) phe-
nomenon (Adamo, Cain, & Mitroff, 2013). SSM errors are a
stubborn source of errors, and several efforts (e.g., Berbaum, 2012;
Cain, Adamo, & Mitroff, 2013) have attempted to identify their
underlying cause(s).
Three primary theories of SSM have been proposed. First, the

original explanation—and the source of the “satisfaction of
search” name—suggests that searchers become “satisfied” with the
meaning of the search on locating a first target and terminate their
search prematurely (Smith, 1967; Tuddenham, 1962). Second, a
resource depletion account (e.g., Berbaum et al., 1991; Cain &
Mitroff, 2013) suggests that cognitive resources (e.g., attention,
working memory) are consumed by a found target and leave fewer
resources available to detect additional targets during subsequent
search. Finally, a perceptual set account suggests that searchers

become biased to look for additional targets similar to the first
found target (Berbaum et al., 1990; Berbaum et al., 1991; Berbaum
et al., 2010); for example, if you just found a tumor, you might
enter “tumor mode” and be less likely to subsequently detect a
fracture that appeared in the same x-ray image.
There have been empirical tests of the satisfaction and resource

depletion theories (see Berbaum, 2012), but no substantial tests
have been offered for the perceptual set account. Previous inves-
tigations have employed a small number of possible target types;
for example, Fleck, Samei, and Mitroff (2010) asked observers to
search for targets that were T-shaped items among L-shaped
distractor items. There were two different forms of the target
Ts—those that were relatively light and those that were relatively
dark. If a perceptual set operates via a priming-like influence, such
a design might be suboptimal, because repeated exposure to each
target could result in elevated priming across all trials for all targets (i.e.,
you only need to see so many lightly colored T-shaped targets
before you become generally biased for lightly colored T-shaped
targets across the entire experiment).
A large and unpredictable set of targets could generate more

short-lived priming during a visual search task, which is more in
line with real-world scenarios in which a perceptual set could
meaningfully impact performance. However, such an experimental
design—many and varied targets spread over an immense number
of trials—is not practical to administer in a laboratory environ-
ment, and it is not easily assessed in real-world scenarios such as
an airport security checkpoint. Here we used the Airport Scanner
gameplay data to address this idea.
More details about the nature of the data and the gameplay are

available elsewhere (e.g., Mitroff & Biggs, 2014); however, we
highlight in Table 1 how we filtered the gameplay variables to
address our specific research question at hand. Each trial (bag)
could contain 0–3 illegal target items with approximately 43% of
all trials containing one target, 6% with two targets, and less than
1% with three targets. We analyzed SSM errors by comparing
search accuracy for a specific target item on single-target trials to
search accuracy for the same target on dual-target trials when
another target had been detected first (e.g., Biggs &Mitroff, 2014).
Players identified a target by tapping directly onto the target
location, and we excluded all cases in which one tap captured two
targets. Analyses were limited to target types with at least 20
instances within our dataset (i.e., the shotgun target type was
filtered from our SSM analyses for only contributing seven in-
stances).
We first determined whether SSM errors occurred in the Airport

Scanner gameplay as we have observed in the laboratory (e.g.,
Cain et al., 2013; Fleck et al., 2010). This analysis was performed
across 78 target items without considering the identity of the first
found target; for example, when calculating the SSM error rate for
the pistol as a second target, all data were included whether or not
the first found target was another pistol, a grenade, a knife, and so
forth. A significant overall SSM error rate was found (M !
14.00%, SE ! 1.11%), t(77) ! 12.62, p " .001.
Next, we assessed SSM errors when the two targets in the same

bag were identical (e.g., two exemplars of the dynamite stick target
type; e.g., the second panel of Figure 1) as opposed to when the
two targets in the same bag were not identical (e.g., one pistol and
one hand grenade; e.g., the third panel of Figure 1). Thirty-three
target types met the 20-occurrence minimum for inclusion into
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analyses. We observed significant SSM errors when the first and
second targets were identical (M ! 6.53%, SE ! 1.62%), t(32) !
4.04, p " .001, and when the first and second targets were not
identical (M ! 19.21%, SE ! 1.36%), t(32) ! 14.13, p " .001.
Importantly, there was a significant difference in SSM error rates
for identical targets versus nonidentical targets (Mdifference !
12.69%, SE ! 1.69%), t(32) ! 7.52, p " .001, such that SSM
errors were substantially reduced when the targets were identical
than when the two targets were not identical.
In this particular example, the power of big data allowed us

to answer a nuanced question that required a substantial number
of trials to appropriately assess. Specifically, this analysis fo-
cused on trials that contained two targets and that met several
exclusionary criteria (see Table 1), which resulted in analyzing
only about 125,000 trials out of a dataset of more than
1,000,000,000 trials (0.01%). It was necessary to examine ac-
curacy for specific target types within a framework containing
a wide variety of target types to prevent participants from
becoming overexposed to any one target. This was best accom-
plished through the use of mobile technology, which allowed
for the accumulation of the necessary data while providing

players an enjoyable experience. Importantly, we expanded
current understanding about the mechanisms underlying SSM
errors by revealing that the errors are, in fact, partially due to a
perceptual set mechanism.

Conclusion
Using a game interface to assess cognitive abilities is not new to

psychological research (e.g., Boot et al., 2010; Mané, & Donchin,
1989), but mobile technology offers a phenomenal opportunity to
examine cognitive processes on a large scale. Here we discussed
two specific examples of how we analyzed data from the Airport
Scanner game to address psychological questions, and much more
is possible.
However, using mobile apps for research purposes is easier said

than done. Researchers can build games for data collection pur-
poses and have complete control over the design and implemen-
tation. However, there is no guarantee that any game will be
successful enough to garner data—simply producing a game does
not ensure anyone will play it. Alternatively, researchers can
partner with developers to create apps or can partner with devel-

Table 1
Game Elements and Nature of Trial Filtering for the Multiple-Target Visual Search Example

Game element/variable

Filtering for SSM errors exampleGame variable Description Cases

Airport 6 levels; increase in difficulty Trainee, Honolulu, Las Vegas,
Chicago, Aspen, London

Exclude Trainee

Rank 5 levels; player’s experience
level

Trainee, Operator, Pro, Expert, Elite Only Elite players (here ! 62,606 devices)

Day Sessions within Airport level 5 Days per Airport; additional
Challenge levels for some Airports

Exclude Challenge

Mission type Game play mode Career, Challenge Only Career mode
Replay Repeat a Day after completing it Replays allowed or disallowed Replays allowed
Day status How the Day session ended Completed, timed out, security breach No exclusions
Bag type Shape and size of search array # 15 unique Bag types Briefcase, carry-on, duffle, and purse included
Passenger type Difficulty of Bag Easy: $ 0–8 legal items present Exclude Impossible

Medium: $ 9–13 legal items present
Hard: $ 14–20 legal items present
Impossible: Requires upgrades

In-game upgrades Add-ons to help with gameplay # 10 unique upgrades Exclude all that affect search performance
Special passengers/items Nontypical gameplay events Air Marshals, Flight Crew, First

Class Passengers, Delay
Passengers, Rare Targets (special
items)

Air Marshal and rare-target Bags excluded

Illegal item count No. of target items present 0 targets: $ 50% of all trials Excluded 0-illegal and 3-illlegal item Bags
1 target: $ 43% of all trials
2 targets: $ 6% of all trials
3 targets: $ 1% of all trials

Legal item count No. of distractor items present 0–20 No exclusions
Specific illegal items Various target items (see Figure

1)
# 200 1-target accuracy: N ! 78

2-target accuracy: N ! 33
Specific legal items Various distractor items (see

Figure 1)
# 200 No exclusions

How data filtering affected trial counts
Total trials available as of 11/18/14 2,236,844,667
Total trials for example analysis date range of 04/15/13 to 08/26/13 1,098,098,764
Total trials for 1-target trial accuracy analyses after all filters applied 1,795,907
Total trials for 2-target trial accuracy analyses after all filters applied 126,579

Note. SSM ! subsequent search misses.
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opers of already existing apps, which can be a great opportunity for
both groups; developers can benefit from researchers’ insight and
added press, and researchers can benefit from developers’ skill and
access to established games. Our partnership with Kedlin Co.
exemplifies this beneficial relationship and has been successful
enough to lead to federal funding opportunities for further research
implementations of Airport Scanner.
With the proliferation of mobile technology, it is time to aim

high. In 1998, 1 million trials on a specific cognitive task was a
mind-blowing amount of data (Wolfe, 1998). Today, we collect
over a million trials a day through Airport Scanner. Inflation has
hit visual search, and as researchers, we should (responsibly and
carefully) look for ways to take advantage of this opportunity.
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